iMOTION[™] MADK Sensorless FOC with XMC[™] Getting Started Guide

XMC[™] Microcontrollers June 2016

Agenda

Agenda

iMOTION[™] MADK Platform Introduction

- Compact and modular 3-phase motor drive system solution platform up to 300 W with scalable controller and IPM[™] inverter board options
- > Designed for **sensorless or sensored** motor control
- > Spin your motor in less than 1 hour thanks to provided motor control software and easy-to-use GUI for parametrization and tuning

iMOTION[™] MADK Platform Available Kits and Boards Overview

Controller Boards

Inverter Boards

Agenda

iMOTION[™] MADK System Overview (1/4)

Each iMOTION[™] MADK Kit with XMC[™] consists of following components:

> XMC1302 Control Card

- Based on XMC1302 ARM[®] Cortex[®]-M0 MCU enabling sensored and sensorless motor control
- Control card supports HALL or latest innovation of 3D Magnetic Sensor
- Includes J-Link debug interface by Segger
- μC Probe-based GUI for parametrization and tuning
- µIPM™ (12x12 mm) IRSM836 Series or µIPM™-DIP IRSM505 Series inverter boards
 - 2 different MOSFET variants supporting 230 V or 110 V mains
 - All boards support 3-phase motor drive
- Software package (downloadable from <u>www.infineon.com/MADK</u>) for each individual kit
 - XMC[™] Flasher
 - Micrium µC/Probe[™] for XMC[™]
 - .zip file with project and configuration files for each individual kit (e.g. Eval-M1-1302_05-65D.zip)

iMOTION[™] MADK System Overview (2/4)

For example the Eval-M1-1302_05-65D Kit consists of:

Hardware

- Eval-M1-1302 Control Card
- Eval-M1-05-65D Inverter board with µIPM-DIP and 500 V MOSFET
- Micro-B USB cable
- Software package (downloadable from <u>www.infineon.com/MADK</u> website)
 - XMC[™] Flasher
 - Micrium µC/Probe[™] for XMC[™]
 - Eval-M1-1302_05-65D.zip file

Eval-M1-05-65D board

iMOTION[™] MADK System Overview (3/4)

Each kit has its own version of s/w package. For example the Eval-M1-1302_05-65D.zip contains following files:

- Eval-M1-1302_05-65D.elf file
- > Eval-M1-1302_05-65D.hex file
- Eval-M1-1302_05-65D.wspx μ C/ProbeTM file
- > Eval-M1-1302_05-65D.xls Excel file

iMOTION[™] MADK System Overview (4/4)

Software package content description:

- Eval-M1-1302_05-65D.hex a compiled FOC motor control code for XMC1302-TO380200 device. This code is configured to run with MADK kit for Motor control application. This firmware needs to be programed to XMC1300 Control Card via XMCTM Flasher tool
- **Eval-M1-1302_05-65D.elf** a debugging file used by μ C/ProbeTM GUI tool
- Eval-M1-1302_05-65D.wspx a µC/Probe[™] project file for predefined GUI used for system parametrization and tuning
- Eval-M1-1302_05-65D.xls an excel spreadsheet which used to convert physical motor and system parameters to equivalent digital values which need to entered through the µC/Probe[™] GUI

iMOTION[™] MADK Hardware Overview (1/2)

Nr.	Kit Name	Kit Description	Order Number	Input Voltage/Output Power
1	Eval-M1- 1302_05-65D	Eval-M1-1302, Eval-M1-05-65D, USB cable	EVALM113020565D TOBO1	100 - 230 Vac / 85 W @10kHz
2	Eval-M1- 1302_05-84D	Eval-M1-1302, Eval-M1-05-84D, USB cable	EVALM113020584D TOBO1	100 – 120 Vac/ 95 W @10kHz
3	Eval-M1- 1302_36-45A	Eval-M1-1302, Eval-M1-36-45A, USB cable	EVALM113023645A TOBO1	320 Vdc / 80 W
4	Eval-M1- 1302_36-84A	Eval-M1-1302, Eval-M1-36-84A, USB cable	EVALM113023684A TOBO1	156 Vdc/ 80 W

For more details about individual boards (Control Cards and μIPM -based Inverters), please check the additional documentation on www.infineon.com/MADK

iMOTION[™] MADK Hardware Overview (2/2)

Infineon parts utilized on Eval-M1-1302:

Infineon Parts	Order Number
XMC1300 Microcontroller	XMC1302-T038F0200
XMC4200 Microcontroller	XMC4200-Q48F256
5V regulator	IFX1763XEJV50
3V3 regulator	IFX1763XEJV33
Dual NPN transistors	SMBT3904S
TVS diode	ESD8V0L2B-03L
Schottky diode	BAS3010A-03W

> Infineon parts utilized on μ IPMTM Inverter Boards:

Inverter Board	Order Number
Eval-M1-05-65D	IRSM505-065DA2
Eval-M1-05-84D	IRSM505-084DA2
Eval-M1-36-45A	IRSM836-045MA
Eval-M1-36-84A	IRSM836-084MA

iMOTION[™] MADK Hardware Connections

To properly connect MADK Kit, follow these steps:

- 1. Connect Eval-M1-1302 to Eval-M1-05-65D via M1 connector
- 2. Connect 3 phase motor wiring to 'U V W' connector
- 3. Connect Eval-M1-1302 to PC via USB cable
- Connect AC source to Eval-M1-05-65D (Power ON is indicated by the LED on the board)

Agenda

iMOTION[™] MADK Tools Overview (1/2) XMC[™] Flasher

→ Download XMCTM Flasher installer package from:

www.infineon.com/xmcflasher

> Installation Requirements

- 1. Oracle JAVA JRE 1.8.0_72 or higher
- <u>http://www.oracle.com/technetwork/java/javase/downloads/index.html</u>
- 2. Segger JLINK software 5.10 or higher
- <u>https://www.segger.com/jlink-software.html</u>
- 3. Windows 7 or higher

iMOTION[™] MADK Tools Overview (2/2) Micrium μ C Probe[™]

Download Micrium µC Probe™ for XMC™ installer package from:

www.infineon.com/ucprobexmc

- > Installation Requirements:
 - PC with Windows Vista, Windows 7, Windows 8, Windows 10 32 bit & 64 bit
 - 2. RAM 3 GB or more

Agenda

iMOTION[™] MADK Getting Started Flashing the *.hex file (1/4)

- 1. Power up inverter board
- Open XMC[™] Flasher's Configuration, select Change -> Device name -> XMC1302-0200

-	Select Device Name to connect	X
	List of Targets:	
Conne	XMC1301-0032	^
Selecte	XMC1302-0016	
Selecto	XMC1302-0032	
Unique	XMC1302-0064	
	XMC1302-0200	
_	XMC1401-0064	~

3. Click on Select and then select the the *.hex file downloaded

S XMC [™] Flasher BETA			_ X
File Configurations B	MI Target Log About	t	
Connect	Disconnect	Select File	
		File:	
Connection Status:	Not connected	Program	
Selected Emulator Serial Nu	mber:		
Selected Device Name:	XMC1302-0200	Verify	
Unique Chip ID:			

4. Make sure that selected *.hex file gets listed under File:

le Configurations BMI	Target Log About		
Connect	Disconnect.	Select File File: Eval-M1-1302_0	5-65D.hex
Connection Status: Selected Emulator Serial Number: Selected Device Name:	Not connected XMC1302-0200	Program Verify	
Unique Chip ID:		Erase	
infineon			

iMOTION[™] MADK Getting Started Flashing the *.hex file (2/4)

 Click on 'Connect...' button and check if connection status is set to connected

File Configurations BMI	Target Log About	
Connect,.	Disconnect.,	Select File
		File: Eval-M1-1302_05-65D.hex
Connection Status:	Connected	File: Eval-M1-1302_05-65D.hex
Connection Status: Selected Emulator Serial Number:	Connected 591011998	File: Eval-M1-1302_05-65D.hev

Click on 'Connect...' button and **6**. Click on 'Disconnect..' button

File Configurations BMI Target Log About	
Connect. Disconnect. Connection Status: Not connected Selected Emulator Serial Number: 591011998 Selected Device Name: XMC1302-0200 Unique Chip ID: Vertice Name:	Select File File: Eval-M1-1302_05-65D.hex Program Verify Erase
Infineon	

5. Click on 'Program' button

XMC [™] Flasher BETA	
File Configurations BML Larget Log Ab	out
Connect Disconnect	Select File.
Connection Status: Connected Selected Emulator Serial Number: 591011998	File: Eval-M1-1302_05-65D.hex Program
Selected Device Name: XMC1302-0200 Unique Chip ID: 20000406642540120D0B000	Programming succeeded Programming memory was successful !
Infinoan	ОК

See next page if the connection is not established after step 4.

iMOTION[™] MADK Getting Started Flashing the *.hex code (3/4)

- 7. If XMC[™] Flasher cannot connect to Eval-M1-1302 board, there are 2 possible reasons:
 - Segger JLINK software has not been properly installed. That can be checked by searching for SEGGER driver in c:\Program Files\SEGGER\ folder. Make sure at least JLINK 5.0 or higher is installed.

System	nDisk (C:) 🕨 Progr	am Files 🕨 SE	GGER 🕨			
ary 🔻	Share with 🔻	New folder				
		-	Name	-	Date modified	Туре
			📙 JLink_V502h		28/3/2016 9:22 PM	File folder
			🗼 JLink_V512e		6/5/2016 10:38 AM	File folder

 BMI (Boot Mode Index) value of the XMC1302 device is **not** set to User Mode (Debug) SWD0. See next page for description on how to check and set the BMI value by using XMCTM Flasher's BMI feature

iMOTION[™] MADK Getting Started Flashing the *.hex code (4/4)

- 8. To check the BMI (Boot Mode Index) value of the XMC1302 device, please do following steps:
 - 1. Power up the inverter board
 - 2. Click on BMI -> BMI Get Set
 - 3. Check the actual BMI value by clicking on Get BMI
 - If BMI is not SWD0, then click on 'Set BMI' to change BMI to User Mode (Debug) SWD0

✓ XMC [™] Flasher BETA File Configuration BMI Target Lcp BMI Get Set		BMI G 2	
Connect Disconnect.	Select File File:	Get BMI	User Mode (Debug) SWD0(SWDIO=P0.14, SWI
Connection Status: Not connected Selected Emulator Serial Number: Selected Device Name: XMC1302-0200 Unique Chip ID:	Program Verify Erase	Set BMI	Select 💌
		3 Set BMI	Select ASC Bootstrap Loader mode (ASC_BSL) User Mode (Productive)
			User Mode (Debug) SWD0 (SWDIO=P0.14, SWDCLK=P0.15)

iMOTION[™] MADK Getting Started Using Excel file (1/2)

- 1. Open 'Input Parameters' sheet of *.xls
- 2. Enter target Motor and system parameters into yellow marked fields of the spread sheet

R (Resistance per phase, optional)	20	Ω (ohm) 🗲		- Motor's resistance per phase
L (Inductance per phase, L _q for IPM	192000	μH 🗲		Motor's inductance per phase
Pole-Pair No.	3	dec 🖌		- Motor's pole-pair
Startup Parameter				
Startup speed	0	rpm		Cread when \//E control starts
Startup speed threshold	100	rpm 🗲		Speed when V/F control starts
Startup V/f offset ($f = 0$)	5	V		transitioning to FOC control
Startup V/f slew rate	5.33	V/Hz	5.333	Default FOC target speed
Reference speed - user	500	rpm 🗲		(no used in MADK)
Speed ramp-up	500	rpm/s		(ITO USED ITI MADK)
Speed ramp-down	500	rpm/s		
Rotor preposition/alignment tim	50	ms		
Motor Speed Limit (If Use POT A	DC, or PWM to	Adjust Spee		
Speed - limit low	0	rpm		
Speed - limit high	1200	rpm 🗲		— Max. speed of motor
				•
Inverter Parameter				
DC link voltage Vdc	320	Vdc 🗲		 DC Link voltage of MADK kit
Dead time, rise (left) and fall valu	1.00	1.00	μs	DW/M owitching
CCU8 PWM frequency (≤20kHz)	16000	Hz 🗲		
Initial bootstrap precharge / bral	20	ms		frequency input
Motor Phase Current Measurem	ent			
R_shunt	0.2500	Ω (ohm)		
R_IN (of equivalent amplifier)	1	kΩ		DC power supply of
R_feedback (of equiv. Amp)	2.5	kΩ		XMC1302, remember to set
VDD / Maximum voltage at ADC	5.00	v <		 Jumper J3 to 5V or 3.3V

iMOTION[™] MADK Getting Started Using Excel file (2/2)

- The scaled value of Motor parameters are generated in 'PMSM_FOC_Parameters.h' sheet
- Values highlighted in yellow are required to be copied into the PMSM_FOC_Parameters tab of the µC/Probe™ GUI

#ifndef	PMSM_FOC_PARAMETERS_H_			
#define	PMSM_FOC_PARAMETERS_H_			
// Timir	ng parameters			
#define	PERIOD_REG	4000		
#define	BRAKE_TIME	320		
#define	ALIGNMENT_TIME	800		
// Scale	of SVM sine Look-Up Table (LUT)			
#define	SVM_LUT_SCALE	4000		
// Motor	parameters			
#define	L OMEGALI	157		
#define	SCALE_L	14		
// V/f p	parameter			
#define	VQ VF OFFSET	887		
#define	VQ VF SLEW	194		
#define	DEFAULT SPEED STARTUP	0		
#define	VF TRANSITION SPEED	20		
#define	DEFAULT SPEED REFERENCE	102		
#define	RAMPUP RATE	156		
#define	RAMPDOWN_RATE	156		
// Motor	speed limit			
#define	SPEED LOW LIMIT	0		
#define	SPEED HIGH LIMIT	246		
#define	SPEED_MAX_RPM	1200		
// Defau	alt PI Controller Parameters (For	Iq/Id PI, Kp and Ki		
#define	DEFAULT_SPEED_KP	32768		
#define	DEFAULT_SPEED_KI	3		
4 1 1	Input Parameters PMSM FOC Pa	arameters.h		

iMOTION[™] MADK Getting Started Using µC/Probe[™] GUI(1/7)

- **1**. Open *.wspx μ C/ProbeTM project by double click on *.wspx file
- **2.** Check the *.elf file is attached to $\mu C/Probe^{TM}$ project
- 3. Click the 'Run' button

Application	Clipboard		Arrange	Y 11-1-1		
Writable Contr	ols	Oscilloscope 0 150 300	PMSM_FOC_Param 450 600 750 9	eters Motor 1	uning 1350 1500 165	0 1800 1950 2100 2250 2400 2
Slider	61 N	Speed Control	32768	setting So 3	ALEKPKI	Motor State
Horizontal Slid	er vo	Torque Control	26310	1080	12	
Writable Controls	06+	Flux Control	26310	1080	12	MET CLOSED LOOP = 1 BRAKE BOOTSTRAP = 2 STOP MOTOR = 3
Angular Gauges	000	PLL Control 256		32	18	VFOPENLOOP RAMPUP = 4 MET FOC = 5 PRE POSITIONING = 6
Linear Gauges	Doc Doc	Save PI values and Temp. Protection			MCU SLEEP = 7 TRAP PROTECTION = 8 IDLE = 9	
b Charts	cot					
Numeric Indicators	9 149	Infined	n	E		DC Link 82 Volt
Miscellaneous		Setting Ta	rget Speed	T-		Temp.
Advanced 0% 100% Max. Speed 2400 RPM Ref. Speed			ORPM	Protection		
	* *	•				
mbol Browser						

Infineon

Copyright \odot Infineon Technologies AG 2016. All rights reserved.

iMOTION[™] MADK Getting Started Using μ C/Probe[™] GUI(2/7)

- 4. SAVE the parameters to Flash

ifndef PMSM_FOC_PARAMETERS_H_			Oscilloscope	Motor Tuning PMSM FO	C Parameters		
define PMSM_FOC_PARAMETERS_H_			o demoscope		-		
/ Timing parameters	4000		Note: A	All values in this page are	taken from	'PMSM_FOC_Parameters.h' of t	he Excel sheet.
define PERIOD_REG	4000						
define BRAKE_TIME	320				4000	III III	20700
Gerine ALIGNMENI_IIME	1117)			PERIOD_REG	4000	DEFAULT_SPEED_KP	32/68
/ Scale of SVM Sine Look-op Table (101)					Γ	-
(Maton panamatorg	1030			BRAKE_TIME	320	DEFAULT_SPEED_KI	3
define I OMEGNIT	120						
define SCALE L	14			ALIGNMENT_TIME	800	DEFAULT_SPEED_SCALE_KPKI	10
						L	
/ V/f parameter				SVM_LUT_SCALE	4858	DEFAULT_IQID_SCALE_KPKI	12
define VQ VF OFFSET	730						
define VQ VF SLEW	116			L OMEGALI	129	DEFAULT IQ KP	32702
define DEFAULT SPEED STARTUP	0						
define VF TRANSITION SPEED	20			SCALE I	14	DEFAULT IO KI	213
define DEFAULT SPEED REFERENCE	102			OVALL_L		PELAVET_IQ_RI	213
define RAMPUP RATE	156			VO VE OFFSET	730		32702
define RAMPDOWN_RATE	156			VQ_VF_OFF3E1	730	DEFAULT_ID_KP	32102
				VO VF SLEW	116	DEFAULT ID KI	213
/ Motor speed limit						L	
define SPEED_LOW_LIMIT	0		DEE	ALLE T SPEED STARTUP	0	DEFAILT PLI KP	256
define SPEED_HIGH_LIMIT	338		DEI.		U	DELAGET_TEE_R	200
derine SPEED_MAX_RPM	1650			F TRANSITION SPEED	20	DEFAULT PLI KI	64
/ Default PI Controller Parameters	(For Ig/Id PI, Kr	and Ki calculated from L and R)	,				
define DEFAULT SPEED KP	32768		DEFAU	LT SPEED REFERENCE	102	DEFAULT PLL SCALE KPKI	18
define DEFAULT SPEED KI	3		DEI AU		102	DELAGET_TEE_COALE_INTIN	10
define DEFAULT SPEED SCALE KPKI	10			RAMPIID RATE	156		16448
define DEFAULT IQID SCALE KPKI	12			Ram or_Rate	150	DEAD_TIME	10440
define DEFAULT IQ KP	32702				456	TURFOUND MICH	64
define DEFAULT IQ KI	213			RAMPDOWN_RATE	150	THRESHOLD_HIGH	04
define DEFAULT ID KP	32702				•	_	
define DEFAULT_ID_KI	213			SPEED_LOW_LIMIT	0	THRESHOLD_LOW	32
define DEFAULT_PLL_KP	256						-
define DEFAULT_PLL_KI	64			SPEED_HIGH_LIMIT	338	SHIFT_MET_PLL	2
define DEFAULT_PLL_SCALE_KPKI	18					ſ	
				SPEED_MAX_RPM	1650	ADC_DCLINK_IDEAL	615
/ COUS dead time	1.5140					T	
define DEAD_TIME	16998					ADC_DCLINK_SCALE	2183843
/ For MET Fine-Tuning							•
define THRESHOLD HIGH	64					RES_INC	0
define THRESHOLD LOW	32			Save		The second se	
define SHIFT MET PLL	2			Parameters		SPEED_TO_RPM	10000
				to Flash	~	SCALE SPEED TO PPM	14
/ SVM voltage compensation						SCALL_SFLLD_IO_RFM	11
H Input Parameters PMSM FOR	C Parameters.h	P /					

iMOTION[™] MADK Getting Started Using µC/Probe[™] GUI(3/7)

- 5. The default KP, KI values from the PMSM_FOC_Parameters sheet automatically will be copied to the Motor Tuning page
- 6. Use the Target Speed slider to set the percentage of Max. speed desired. Then, click **MotorStart** button => Motor starts to spin

iMOTION[™] MADK Getting Started Using µC/Probe[™] GUI(4/7)

- 7. Under the 'P setting' column are the KP value for the 4 control loops.
- 8. Under the 'I setting' column are the KI value for the 4 control loops.

iMOTION[™] MADK Getting Started Using µC/Probe[™] GUI(5/7)

Over-current and Over-temperature protections

iMOTION[™] MADK Getting Started Using μ C/Probe[™] GUI(6/7)

Motor State Indicator Panel

iMOTION[™] MADK Getting Started Using μ C/Probe[™] GUI(7/7)

Motor Speed, Motor Start/Stop Control Panel

iMOTION[™] MADK Getting Started Tuning motor parameters for V/F open loop

- The FOC software starts the motor with V/F control (open loop), and then transitions to FOC control (closed loop)
- If 'MotorStart' button was clicked and motor does not spin, user can increase the 'Startup V/f offset' value in 'Input Parameters' spread sheet and copy the generated
 VQ_VF_OFFSET value from PMSM_FOC_Parameters.h spread sheet to 'PMSM_FOC_Parameters' page of µC/Probe[™] GUI.
- If the ramp-up speed is too slow, increase the 'Speed rampup' value in 'Input Parameters' spreadsheet and copy 'RAMPUP_RATE' value from 'PMSM_FOC_Parameters.h' to uC/Probe 'PMSM_FOC_Parameter' Page. Remember to save setting.
- If the motor starts with V/F control but after transition to FOC control motor stops, then P, I, SCALEKPKI settings of the control loops need to be tuned. See next pages...

Getting Started – Tuning of K_p , K_i value using the uC/Probe (1/4)

> Effects of increasing proportional gain K_p or integral gain K_i of PI controller independently

		Effects on Step Response Characteristics					
	Gain Change	Rise Time	Overshoot	Settling Time	Steady-State Error		
1	$K_p \uparrow$ K_i unchanged	♥ ☺	↑ ⊗	Minor Change ☺	♥ ☺		
2	$K_i \uparrow$ K_p unchanged	♥ ☺	↑ ⊗	↑ ⊗	Eliminate 😊		

↑ Increase

Decrease

Getting Started – Tuning of Kp, Ki value using the uC/Probe (2/4)

- 1. The values P setting, I setting and SCALEKPKI for Torque and Flux PI Controllers are calculated from the physical motor and system parameters, and typically don't need to be tuned in the first iteration.
- The Speed Control and PLL Control parameters should start to be modified if the motor cannot transit from V/F open-loop to FOC closedloop smoothly
- 3. Remember to save setting

Getting Started – Tuning of Kp, Ki value using the uC/Probe (3/4)

- If the motor does not spin in FOC close loop, ↑ the SCALEKPKI of PLL Control and check the motor behaviour. If motor start to move slowly, ↑ the SCALEKPKI further. Else, ↓ the SCALEKPKI
- 4. Apply similar tactic for the tuning of Speed Control

Getting Started – Tuning of Kp, Ki value using the μ C/ProbeTM (4/4)

 Adjust P and I setting of PLL Control/Speed Control for finer tuning of Motor behaviour. The final goal is to achieve **sinusoidal** current waveform in the Oscilloscope page of the μC/Probe GUI.

The P, I, SCALEKPKI values are not optimized or fine-tuned, so the 3 motor currents I_U, I_V, I_W are **not sinusoidal**

Target of tuning the P, I and SCALEKPKI values of the control loops is to achieve the target motor performance and get **sinusoidal** current shapes for the 3 motor currents I_U, I_V, I_W

Copyright © Infineon Technologies AG 2016. All rights reserved.

General hints on tuning of SCALEKPKI, P, I value using the uC/Probe (1/2)

- If the motor can start from V/f open loop control and then run to target speed in FOC closed loop control, but the transition from open loop to closed loop is not smooth, the user should try following:
 - Speed ramp-up' and 'Speed ramp-down' value and
 the
 'Startup speed threshold' value of the 'Input Parameters' excel sheet. This will force the motor to transit to FOC control loop faster
- 2. For the FOC control tuning, the next page shows the procedure in form of an algorithm block diagram on how to tune PLL loop for FOC control. For Speed Control tuning the user should follow the same flow. Typically, only these 2 PI control loops need to be tuned with the FOC software for iMOTION[™] MADK.

General hints on tuning of SCALEKPKI, P, I value using the uC/Probe (2/2)

iMOTION[™] MADK Getting Started Further Software Development Support

- Once the motor control system using iMOTION[™] MADK has met the target performance for their applications, users may require the DAVE[™] project files including the XMC[™] motor control source code for further application development
- DAVE[™] project files corresponding to .hex file for each particular iMOTION[™] MADK kit will be made available for download at <u>www.infineon.com/MADK</u>, as well as through DAVE example projects repository

http://www.infineon.com/cms/en/product/promopages/aimmc/dave_downloads.html

- Infineon is constantly improving FOC control algorithm and the firmware code and example projects will be updated regularly
- If source code you requested is not available, please contact the nearest Infineon sales office or support team

Agenda

Resource Listing

- Kit documentation:
 - EVAL-M1-1302 User Manual
 - EVAL-M1-36-(84A/45A) or EVAL-M1-05-(84D/65D) User Manuals

www.infineon.com/MADK

Support material:

Collaterals and Brochures	 Product Briefs Selection Guides Application Brochures Presentations Press Releases, Ads 	- <u>www.infineon.com/XMC</u>
Technical Material	 Application Notes Technical Articles Simulation Models Datasheets, MCDS Files PCB Design Data 	 www.infineon.com/XMC Kits and Boards DAVE[™] Software and Tool Ecosystem
Videos Play	 Technical Videos Product Information Videos 	 <u>Infineon Media Center</u> <u>XMC Mediathek</u>
Contact Support	ForumsProduct Support	 <u>Infineon Forums</u> <u>Technical Assistance Center (TAC)</u>

infineon

Glossary abbreviations

- ADC Analog-to-Digital Converter
- > FOC Field-Oriented Control
- > IPM Intelligent Power Modules
- MADK iMOTION[™] Modular Application Design Kit
- MET Maximum Efficiency Tracking
- PI Controller
 Proportional–Integral Controller
- > PMSM Permanent Magnet Synchronous Motor
- > PWM Pulse Width Modulation
- SVM Space vector modulation
- > XMC[™] Cross-Market Microcontrollers

Disclaimer

The information given in this training materials is given as a hint for the implementation of the Infineon Technologies component only and shall not be regarded as any description or warranty of a certain functionality, condition or quality of the Infineon Technologies component.

Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of noninfringement of intellectual property rights of any third party) with respect to any and all information given in this training material.

Part of your life. Part of tomorrow.

Schematic of Eval-M1-1302 board (1/3)

Copyright $\ensuremath{\mathbb{C}}$ Infine on Technologies AG 2016. All rights reserved.

Schematic of Eval-M1-1302 board (2/3)

Schematic of Eval-M1-1302 board (3/3)

Copyright © Infineon Technologies AG 2016. All rights reserved.

Schematic of Eval-M1-05-xxD

Schematic of Eval-M1-36-xxA

